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We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a
passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed
feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the
coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermit-
tency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation
regimes with the transverse instability of some of the compound cavity’s antimodes. Finally, we demonstrate
how, by using an active relay, bubbling can be suppressed.
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Synchronization phenomena of coupled nonlinear oscilla-
tors are omnipresent and play an important role in physical,
chemical, and biological systems �1,2�. Understanding the
synchronization mechanisms is crucial for many practical ap-
plications. One of the most interesting and challenging phe-
nomena when coupling nonlinear systems is the synchroni-
zation of chaotic dynamics �3�. In order to characterize the
synchronization effects, stability properties are a key issue.
Noise can, for instance, cause intermittent desynchroniza-
tion. This behavior is called bubbling �4� and has been ob-
served, for example, in optical �5,6� and electrical �7� sys-
tems.

Semiconductor lasers are of particular interest in the study
of chaos synchronization. The synchronization properties
may facilitate new secure communication schemes. How-
ever, if two identical semiconductor lasers are optically
coupled over a finite distance, it has been observed that the
coupling delay leads to spontaneous symmetry breaking, and
only generalized synchronization of leader-laggard type
occurs �8�. A passive relay in the form of a semitransparent
mirror or an active relay in the form of a third laser in
between the two lasers has been shown to stabilize the iso-
chronous synchronization solution �9–12�, rendering such
configurations attractive for chaos-based applications, such
as, bidirectional encrypted communication, or chaos-based
key exchange, as detailed in Ref. �13�.

In this work we show theoretically that bubbling and on-
off intermittency occur in both relay setups. In the coherence
collapse �CC� and in the low-frequency fluctuation �LFF�
regime, we find that bubbling is caused by transversally un-
stable external cavity modes �ECMs�. In the LFF regime the
localization of the transversally unstable modes in the syn-
chronization manifold �SM� results in desynchronization dur-
ing power dropouts, which has also been observed in unidi-
rectionally coupled lasers �14�. For the active relay we find
that bubbling can be suppressed by stronger pumping of the
relay laser. We consider two identical systems which are
delay-coupled via a relay �Fig. 1�.

The relay may be an active element or a passive element
which merely distributes the arriving signals between the

systems. Each system receives a delayed signal from the re-
lay

Ẋ j = f�X j� + KY�t − �/2� �j = 1,2� . �1�

Here X j ,Y�Rn are the state vectors of the system j and the
relay, respectively, f is a nonlinear function, K is the relay-
to-system coupling matrix, and � is the propagation delay
between system 1 and system 2. The overdot denotes the
derivative with respect to time t.

For the active relay we consider the equation

Ẏ = g�Y� + 1
2LX1�t − �/2� + 1

2LX2�t − �/2� , �2�

where L is the system-to-relay coupling matrix and the func-
tion g describes the internal dynamics of the relay. For the
passive relay we consider the algebraic equation

Y�t� = 1
2 �X1�t − �/2� + X2�t − �/2�� . �3�

Equation �1� together with the relay Eq. �2� or �3� allow for
an isochronous �or zero-lag� solution X1�t�=X2�t�, respec-
tively. The SM is thus invariant. To analyze the stability of
this solution we introduce a symmetric variable
S= 1

2 �X1+X2� and an antisymmetric variable A= 1
2 �X1−X2�.

Equation �1� can then be rewritten in the new variables,

Ṡ = 1
2 �f�S + A� + f�S − A�� + KY�t − �/2� , �4�

Ȧ = 1
2 �f�S + A� − f�S − A�� . �5�

Note that due to the symmetric coupling the delay terms and
all the coupling parameters in Eq. �5� vanish. Equation �5�
taken at Ȧ=0 has a solution A=0 which represents the iso-
chronously synchronized state. Its stability is determined by
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FIG. 1. Schematic setup.
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linearizing Eqs. �4� and �5� in the variable A around A=0,
i.e., we linearize orthogonal to the SM,

Ṡ = f�S� + KY�t − �/2� , �6�

Ȧ = Df�S�A . �7�

Here, Df�S� denotes the Jacobian of f evaluated at position
S. Since S depends on time, Eq. �7� constitutes a time-
dependent variational equation.

For both relay types the dynamics within the SM re-
sembles the dynamics of a single system with either self-
feedback �passive relay�

Ṡ = f�S� + KS�t − �� �8�

or coupling to the active relay

Ṡ = f�S� + KY�t − �/2� , �9�

Ẏ = g�Y� + LS�t − �/2� . �10�

In both cases the stability of the synchronized solution is
governed by Eq. �7�. However, the trajectory S�t� will be
different and the synchronized state may thus have different
stability properties.

Bubbling occurs �4,15� when an invariant set I, for ex-
ample, a periodic orbit, in the SM is transversally unstable,
while the chaotic attractor in the SM is still transversally
stable, i.e., the largest transversal Lyapunov exponent of the
attractor is negative, ���0. In this situation the trajectory
can be pushed toward the unstable set by noise and leave the
SM. If there is no other attractor present, the trajectory will
eventually come back to the SM and the systems will syn-
chronize again. The point where the invariant set I loses its
transverse stability is called bubbling bifurcation, while the
point where the attractor itself becomes unstable is called
blow-out bifurcation.

For semiconductor lasers the dynamics of each system is
governed by the dimensionless Lang-Kobayashi rate equa-
tions �16,17�

Ėj = 1
2 �1 + i��njEj + Kei�EY�t − �/2� + Fj�t� ,

Tṅj = p − nj − �1 + nj��Ej�2. �11�

Here, Ej and EY are the complex electric field amplitudes of
the jth system and the relay, respectively, nj is the excess
carrier density, � is the linewidth enhancement factor, p is
the pump current, and the time scale parameter T=�c /�p is
the ratio of the carrier ��c� and the photon ��p� lifetime. For
simplicity we choose the feedback phase �=0. Note that in
general one could also include coupling phases in Eq. �3�.
This leads to interference conditions of all phases which
have to be satisfied for isochronous synchronization. In our
simulations we consider the spontaneous emission noise via
a complex Gaussian white random variable Fj�t� with the
covariance �Fj�t�Fi�t����=��n+n0��ij��t− t��, where n0=10
is the carrier density at threshold and �=10−5 is the sponta-
neous emission factor. Carrier noise has not been taken into
account at this level.

If the relay is realized through a semitransparent mirror
�passive relay�, the dynamics within the SM is given by Eq.
�11� with EY�t−� /2�=Ej�t−��, i.e., an effectively decoupled
laser. For this configuration we calculate the maximum par-
allel Lyapunov exponents �� �within the SM� as well as the
maximum transversal Lyapunov exponents �� by simulating
the dynamics in the SM without noise and applying the
method developed in �18�. Figure 2�a� displays the Lyapunov
exponents as a function of the feedback strength K. There are
two blow-out bifurcations �19� at K	0.008�B1� and at
K	0.09�B2�, where �� changes sign and the chaotic attrac-
tor loses its transversal stability. Similar behavior is found
for an active relay �Fig. 2�b��.

Over a wide range of K �Fig. 2�a��, in which the attractor
is stable and the dynamics is chaotic, we observe bubbling
induced by spontaneous emission noise. In these regimes,
when the noise is switched off in the simulations, the two
lasers stay perfectly synchronized. In the regime with
��	0 we observe desynchronization bursts even without
noise, i.e., the system exhibits on-off intermittency. Figure
3�a� depicts the bubbling behavior for values of K above B2
where the laser operates in the CC regime. Figure 3�b� cor-
responds to a lower pump current, where the synchronized
lasers operate in the LFF regime. In this regime bubbling
only takes place during the power dropouts. In both cases,
when the noise amplitude is decreased, the desynchroniza-
tion peaks occur less frequently; the maximum height, how-
ever, does not decrease.

We now relate the desynchronization dynamics to the
transverse stability of the ECMs in the SM. These modes
organize the dynamics in the SM in the CC and the LFF
regime. The ECMs are rotating wave solutions of the form
E�t�=A exp�i
t� and n�t�=n with constant values A, 
, and
n. They are well-studied �20� solutions of the Lang-
Kobayashi equations and are located on an ellipse in the
�
 ,n� plane �see inset of Fig. 4�a��. The modes on the top
and bottom half of the ellipse are called modes and antimo-
des, respectively.

The transverse stability of an ECM is governed by the
variational Eq. �7� where S�t� is the ECM solution. To deter-
mine the stability, we transform the laser equations into a
rotating frame �21� E0=E exp�−i
t�. In these coordinates, an
ECM E=A exp�i
t+ i�� is transformed into a family of fixed
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FIG. 2. �Color online� Maximum transversal Lyapunov expo-
nent �� �red dashed� and maximum parallel Lyapunov exponent ��

�blue solid� as a function of the feedback strength K for �a� passive
relay and �b� active relay �prelay=4.0�. At the two blow-out bifurca-
tions B1 and B2 the maximum transversal Lyapunov exponent of
the chaotic attractor changes sign. Other parameters: T=200,
p=1.0, �=1000, �=4, �=0
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points E0=A exp�i��. Splitting the complex electric field
E0j =xj + iyj and using the vector X j = �xj ,yj ,nj�, Eq. �11� can
be written in the form of Eq. �1� and the above analysis
applies. The eigenvalues of the Jacobian in the rotating frame
then determine the ECM transverse stability. Figure 4�a� dis-
plays the position of the ECMs in the �
 ,n� plane and their
stability for a choice of parameters. The black trajectory dis-
plays the projection of the symmetric variable nS.

The bubbling behavior in the CC regime and the correla-
tion of the desynchronization with the power dropouts in the
LFF regime can be understood as follows. In the CC regime
the dynamics comprises chaotic itinerancy among the modes
and global antimode dynamics �22� �see Fig. 4�a��. The
modes involved in the chaotic itinerancy are transversally
stable �blue circles�. The antimodes on the other hand are
transversally unstable �red squares�. Thus, when the trajec-
tory approaches the antimode, noise can lead to desynchro-
nization and bubbling occurs. The yellow diamonds in Fig.
4�a� mark the onset of desynchronization, showing that bub-
bling always occurs in the vicinity of the antimodes �inde-
pendent of the power�. Please note that due to the role of
noise not every approach to an antimode results in a bub-
bling excursion.

In the LFF regime �23� the dynamics is similar. The in-
tensity buildup process in between power dropouts is char-
acterized by chaotic switching between different attractor ru-
ins �ghosts� of unstable ECMs with a drift toward the ECM
with minimal n. All ECMs involved in the buildup process
are transversally stable and we observe no desynchroniza-
tion. After a transient time, a power dropout takes place.
During the dropout the trajectory collides with an antimode
in a crisis. Again, the vicinity to transversally unstable
antimodes—rather than the drop in power—leads to bub-
bling behavior.

The transverse stability of the ECMs depends on the laser
and coupling parameters as well as on the parameters of the
particular ECM. Note that modes and antimodes are not nec-
essarily transversally stable or unstable, respectively. The
modes on the lower right-hand side of Fig. 4�a�, for instance,
are transversally unstable. With decreasing coupling strength
K, more modes become transversally unstable until the
whole chaotic attractor loses its transversal stability. This
leads to the blowout bifurcation B2 in Fig. 2.

With increasing feedback strength the bubbling occurs
less frequently and the average synchronization interval �
increases; however, we did not find a transition to a
bubbling-free state in a physically reasonable range of K.
Note that neither K nor the other parameters of our model are
normal parameters in the sense of Ref. �5�. Thus we do not
observe power-law scaling of � as in �6,15�. The parallel
Lyapunov exponent �� approaches zero with increasing K
and the chaoticity decreases, making this situation less inter-
esting for chaos-based applications.

If the elements are coupled via an active relay, the syn-
chronized lasers behave similar to two delay-coupled lasers
�see Eq. �9��. If we choose f=g and K=L, we obtain a system
of two identical mutually coupled semiconductor lasers,
which has been studied before �8,24,25�. Such a system has
rotating wave solutions of the form ES�t�=AS exp�i
t�,
EY�t�=AY exp�i
t+ i��, nS�t�=nS, and nY�t�=nY, called
compound laser modes �CLMs�. Their spectrum is more
complex than for the ECMs; besides the synchronized solu-
tions �which correspond to ECMs�, there exist antisymmetric
modes, for which the relay and the synchronized solution are
in antiphase ��=
�, as well as asymmetric modes where the
relay has a different intensity than the outer lasers.

The positions of the transversally unstable modes are
close to those of the ECMs of a single laser in the �
 ,n�
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FIG. 3. Carrier density of the symmetric variable
nS= 1

2 �n1+n2� and intensity difference �I1− I2� / �I1+ I2� �normalized
by the mean intensity� representing the deviation from the synchro-
nized state vs time. �a� Bubbling in the coherence collapse regime
�p=1.0�. �b� Bubbling in the low-frequency fluctuation regime dur-
ing power dropouts �p=0.1�. Other parameters: T=200, K=0.12,
�=1000, �=4.
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FIG. 4. �Color online� Projection of the dynamics of the sym-
metrized solution nS, ES=AS exp�i�S� �black trajectory� onto the
�
 ,n� plane for �a� passive relay �p=1.0� and �b� active relay
�p=1.0, prelay=4.0�. Transversally stable �blue circles� and transver-
sally unstable �red squares� ECMs are also shown. �a� The compe-
tition between chaotic itinerancy and antimodes leads to bubbling
during global antimode dynamics. Yellow diamonds mark the onset
of desynchronization. Solid and dashed parts of the trajectory cor-
respond to synchronized and desynchronized periods, respectively.
The inset in �a� shows the ECM ellipse and bubbling dynamics in a
larger range. �b� The system evolves around the transversally stable
compound laser modes and bubbling is suppressed. Parameters are
as in Fig. 3.
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parameter space. Also the dynamics of three identical
coupled lasers is similar to the behavior in the presence of a
passive relay. Indeed, we find bubbling in both the LFF and
CC regimes.

In the experiments reported in �12� all the coupling pa-
rameters in the setup are chosen identical, i.e., L=2K in Eqs.
�1� and �2�. But also in this case we observe qualitatively
similar laser dynamics, with a trajectory in parameter space
coming close to the transversally unstable CLMs.

To suppress the bubbling while maintaining strong chaos,
we apply a sufficiently higher pump current to the relay laser
�prelay=4.0� than to the outer lasers �p=1.0�. For this con-
figuration we have calculated �� 	0.026 and ��	−0.032,
confirming that the system is in the chaotic regime
�cf. Fig. 2�b��. The system still itinerates among the com-
pound laser modes, but there is no global antimode dynam-
ics. Moreover, in contrast to the behavior for the symmetric
case prelay=1.0, the active relay now suppresses the bubbling
and there is no desynchronization �see Fig. 4�b��. Inspecting
Fig. 4�b�, we can conclude that the CLMs involved in the
dynamics are indeed transversally stable. If the middle laser

is pumped less strongly than the outer ones, the opposite
effect is observed.

In conclusion, we have demonstrated a mechanism for
desynchronization by bubbling in a very general setting of
two delay-coupled lasers with either passive or active relay.
We have shown that in the CC and LFF regimes the occur-
rence of bubbling is related to the transverse instability of
some of the compound cavity’s antimodes and that, by tun-
ing of the active relay, it is possible to suppress the bubbling.
These synchronization properties are decisive for the setup of
chaos-synchronization-based applications and provide a
strategy on how to achieve stable synchronization.
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